VECTOR ANALYSIS

Previous year Questions from 1992 To 2017

Syllabus

Scalar and vector fields, differentiation of vector field of a scalar variable; Gradient, divergence and curl in cartesian and cylindrical coordinates; Higher order derivatives; Vector identities and vector equations. Application to geometry: Curves in space, Curvature and torsion; Serret-Frenet’s formulae. Gauss and Stokes’ theorems, Green’s identities.

** Note: Syllabus was revised in 1990’s and 2001 & 2008 **
2017

1. Suppose U and W are distinct four dimensional subspaces of a vector space V, where $\dim V = 6$. Find the possible dimensions of subspace $U \cap W$. (10 Marks)

2. Evaluate the integral: $\int_S \vec{F} \cdot d\vec{s}$ where $\vec{F} = 3xy^2\hat{i} + (yx^2 - y^3)\hat{j} + 3xz^2\hat{k}$ and S is a surface of the cylinder $y^2 + z^2 \leq 4$, $-3 \leq x \leq 3$, using divergence theorem. (9 Marks)

3. Using Green’s theorem, evaluate the $\int_C F(\vec{r}).d\vec{r}$ counterclockwise where $F(\vec{r}) = (x^2 + y^2)\hat{i} + (x^2 - y^2)\hat{j}$ and $d\vec{r} = dx\hat{i} + dy\hat{j}$ and the curve C is the boundary of the region $R = \{(x, y)\mid 1 \leq y \leq 2 - x^2\}$. (8 Marks)

2016

4. Prove that the vector $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{c} = 4\hat{i} - 2\hat{j} - 6\hat{k}$ can form the sides of a triangle find the length of the medians of the triangle (10 Marks)

5. Find $f(r)$ such that $\nabla f = \frac{\vec{r}}{r}$ and $f(1)=0$ (10 Marks)

6. Prove that $\oint_C f d\vec{r} = \iint_S d\vec{S} \times \nabla f$ (10 Marks)

7. For the of cardioid $r = a(1 + \cos \theta)$ show that the square of the radius of curvature at any point (r, θ) is proportion to r. Also find the radius of curvature if $\theta = 0, \frac{\pi}{4}, \frac{\pi}{2}$. (15 Marks)

2015

8. Find the angle between the surfaces $x^2 + y^2 + z^2 - 9 = 0$ and $x^2 + y^2 - 3$ at $(2, -1, 2)$ (10 Marks)

9. A vector field is given by $\vec{F} = (x^2 + xy^2)\hat{i} + (y^2 + x^2 y)\hat{j}$. Verify that the field is irrotational or not. Find the scalar potential. (12 Marks)

10. Evaluate $\int_C e^{-x}(\sin y dx + \cos y dy)$, Where C is the rectangle with vertices $(0, 0), (\pi, 0), (\pi, \frac{\pi}{2}), (0, \frac{\pi}{2})$ (12 Marks)

2014

11. Find the curvature vector at any point of the curve $\vec{r}(t) = t \cos t \hat{i} + t \sin t \hat{j}$, $0 \leq t \leq 2\pi$. Give its magnitude also. (10 Marks)
12. Evaluate by Stoke’s theorem $\int_{\Gamma} (y \, dx + z \, dy + x \, dz)$, where Γ is the curve given by $x^2+y^2+z^2-2ax-2ay=0$, $x+y=2a$ starting from $(2a,0,0)$ and then going below the z-plane. (20 Marks)

2013

13. Show the curve $\vec{x}(t) = \hat{i} + \left(\frac{1+t}{t} \right) \hat{j} + \left(1-\frac{t^2}{t} \right) \hat{k}$ lies in a plane. (10 Marks)

14. Calculate $\nabla^2 (r^n)$ and find its expression in terms of r and n, r being the distance of any point (x,y,z) from the origin, n being a constant and ∇^2 being the Laplace operator. (10 Marks)

15. A curve in space is defined by the vector equation $\vec{r} = t^2 \hat{i} + 2t \hat{j} - t^3 \hat{k}$. Determine the angle between the tangents to this curve at the points $t = +1$ and $t = -1$. (10 Marks)

16. By using Divergence Theorem of Gauss, evaluate the surface integral

$$\iint (a^2x^2 + b^2y^2 + c^2z^2)^{\frac{1}{2}} \, dS$$

where S is the surface of the ellipsoid $ax^2+by^2+cz^2=1$, a,b and c being all positive constants. (15 Marks)

17. Use Stroke’s theorem to evaluate the line integral $\int_C (-y^2 \, dx + x^2 \, dy - z^3 \, dz)$, where C is the intersection of the cylinder $x^2+y^2=1$ and the plane $x+y+z=1$. (15 Marks)

2012

18. If $\vec{A} = x^2yz \hat{i} - 2xz^2 \hat{j} + xz^2 \hat{k}$, $\vec{B} = 2z \hat{i} + y \hat{j} - x^2 \hat{k}$, find the value of

$$\frac{\partial^2}{\partial x \partial y} (\vec{A} + \vec{B})$$

at $(1,0,-2)$. (12 Marks)

19. Derive the Frenet-Serret formulae. Define the curvature and torsion for a space curve. Compute them for the space curve $x = t$, $y = t^2$, $z = \frac{2}{3} t^3$. Show that the curvature and torsion are equal for this curve. (20 Marks)

20. Verify Green’s theorem in the plane for

$$\iint_C (xy + y^2 \, dx + x^2 \, dy)$$

where C is the closed curve of the region bounded by $y = x$ and $y = x^2$. (20 Marks)

21. If $\vec{F} = y \hat{i} + (x - 2xz) \hat{j} - xy \hat{k}$, evaluate

$$\iiint_S (\nabla \times \vec{F}) \, d\vec{s}$$

where S is the surface of the sphere $x^2+y^2+z^2=a^2$ above the xy-plane. (20 Marks)
22. For two vectors \(\vec{a} \) and \(\vec{b} \) give respectively by
\[\vec{a} = 5t^2 \hat{i} + t \hat{j} - t^3 \hat{k} \]
and
\[\vec{b} = \sin 5t \hat{i} - \cos t \hat{j} \]
determine:
(i) \(\frac{d}{dt}(\vec{a} \cdot \vec{b}) \)
(ii) \(\frac{d}{dt}(\vec{a} \times \vec{b}) \)
\(\text{(10 Marks)} \)

23. If \(u \) and \(v \) are two scalar fields and \(\vec{f} \) is a vector field, such that \(u \vec{f} = \nabla v \), find the value of
\(\vec{f} \cdot \nabla \vec{f} \)
\(\text{(10 Marks)} \)

24. Examine whether the vectors \(\nabla u, \nabla v, \nabla w \) are coplanar, where \(u, v \) and \(w \) are the scalar functions defined by:
\[u = x + y + z, \]
\[v = x^2 + y^2 + z^2 \]
and \(w = yz + zx + xy \)
\(\text{(15 Marks)} \)

25. If \(\vec{u} = 4y \hat{i} + x \hat{j} + 2z \hat{k} \) calculate double integral
\[\iint \nabla \times \vec{u} \, dS \]
over the hemisphere given by \(x^2 + y^2 + z^2 = a^2, \) \(z \geq 0 \)
\(\text{(15 Marks)} \)

26. If \(\vec{r} \) be the position vector of a point, find the value(s) of \(n \) for which the vector \(\vec{r} \) is
(i) irrotational, (ii) solenoidal
\(\text{(15 Marks)} \)

27. Verify Gauss’ Divergence Theorem for the vector \(\vec{v} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k} \) taken over the cube \(0 \leq x, y, z \leq 1 \).
\(\text{(15 Marks)} \)

2010

28. Find the directional derivative of \(f(x,y) = x^2 y^3 + xy \) at the point \((2,1) \) in the direction of a unit vector which makes an angle or \(\frac{\pi}{3} \) with the \(x \)-axis.
\(\text{(12 Marks)} \)

29. Show that the vector field defined by the vector function
\[\vec{v} = xyz \left(yz \hat{i} + xy \hat{j} + xy \hat{k} \right) \]
is conservative.
\(\text{(12 Marks)} \)

30. Prove that \(\text{div}(f \vec{V}) = f \left(\text{div} \vec{V} \right) + \left(\text{grad} \cdot f \right) \vec{V} \) where \(f \) is a scalar function.
\(\text{(20 Marks)} \)

31. Use the divergence theorem to evaluate
\[\iiint S \vec{V} \cdot dA \]
where \(\vec{V} = x^2 \hat{i} + y \hat{j} - xz^2 \hat{k} \) and \(S \) is the boundary of the region bounded by the paraboloid \(z = x^2 + y^2 \) and the plane \(z = 4y \).
\(\text{(20 Marks)} \)

32. Verify Green’s theorem for \(e^x \sin y \, dx + e^x \cos y \, dy \) the path of integration being the boundary of the square whose vertices are \((0,0), \left(\frac{\pi}{2}, 0 \right), \left(\frac{\pi}{2}, \frac{\pi}{2} \right), \text{ and } \left(0, \frac{\pi}{2} \right) \)
\(\text{(20 Marks)} \)

2009

33. Show that \(\text{div}(\text{grad} \phi) = n(n+1)r^{n-2} \) where \(r = \sqrt{x^2 + y^2 + z^2} \).
\(\text{(12 Marks)} \)
34. Find the directional derivative of (i) \(4xz^3-3x^2y^2z^2\) at (2,−1,1) along z-axis
 (ii) \(-x^2yz+4xz^2\) at (1,−2,1) in the direction of \(2\hat{i} - \hat{j} - 2\hat{k}\). \((6+6=12\text{ Marks})\)

35. Find the work done in moving the particle once round the ellipse \(\frac{x^2}{25} + \frac{y^2}{16} = 1, z=0\)
 under the field of force given by \(\vec{F} = (2x - y + z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z)\hat{k}\). \((20\text{ Marks})\)

36. Using divergence theorem, evaluate \(\iint_S \vec{A} \cdot d\vec{S}\) where \(\vec{A} = x\hat{i} + y\hat{j} + z\hat{k}\) and \(S\) is the surface of the sphere \(x^2+y^2+z^2=a^2\) \((20\text{ Marks})\)

37. Find the value of \(\iiint_S (\nabla \times \vec{f}) \cdot d\vec{S}\) taken over the upper portion of the surface \(x^2+y^2-2ax+az=0\) and the bounding curve lies in the plane \(z=0\), when
 \(\vec{F} = (y^2 + z^2 - x^2)\hat{i} + (z^2 + x^2 - y^2)\hat{j} + (x^2 + y^2 - z^2)\hat{k}\) \((20\text{ Marks})\)

2008

38. Find the constants \(a\) and \(b\) so that the surface \(ax^2-byz=(a+2)x\) will be orthogonal to the surface \(4x^2y+z^3=4\) at the point \((1,-1,2)\). \((12\text{ Marks})\)

39. Show that \(\vec{F} = (2xy+z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}\) is a conservative force field. Find the scalar potential for \(\vec{F}\) and the work done in moving an object in this field \((1,-2,1)\) to \((3,1,4)\). \((12\text{ Marks})\)

40. Prove that \(\nabla^2 f(x) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}\) where \(r = \left(x^2 + y^2 + z^2\right)^{\frac{1}{2}}\). Hence find \(f(x)\) such that \(\nabla^2 f(x) = 0\). \((15\text{ Marks})\)

41. Show that for the space curve \(x=t, y=t^2, z=\frac{2}{3}t^3\) the curvature and torsion are same at every point. \((15\text{ Marks})\)

42. Evaluate \(\int_c \vec{A} \cdot d\vec{r}\) along the curve \(x^2+y^2=1, z=1\) from \((0,1,1)\) to \((1,0,1)\) if
 \(\vec{A} = (yz + 2x)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}\). \((15\text{ Marks})\)

43. Evaluate \(\iint_S \vec{F} \cdot d\vec{s}\) where \(\vec{A} = (yz + 2x)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}\), \(\iint_S \vec{F} \cdot d\vec{s}\) and \(S\) is the surface of the cylinder bounded by \(x^2+y^2=4, z=0\) and \(z=3\) \((15\text{ Marks})\)
2007

44. If \(\vec{r} \) denotes the position vector of a point and if \(\hat{r} \) be the unit vector in the direction of \(\vec{r}, r = |\vec{r}| \) determined grad \((r^{-1})\) in terms of \(\hat{r} \) and \(r \). (12 Marks)

45. Find the curvature and torsion at any point of the curve \(x = a \cos 2t, y = a \sin 2t, z = 2a \sin t \). (12 Marks)

46. For any constant vector, show that the vector \(\vec{a} \) represented by \(\text{curl} (\vec{a} \times \vec{r}) \) is always parallel to the vector \(\vec{a}, \vec{r} \) being the position vector of a point \((x,y,z)\) measured from the origin. (15 Marks)

47. If \(\vec{r} = xi + yj + zk \) find the value(s) of \(n \) in order that \(n \vec{r} \) may be (i) solenoidal (ii) irrotational (15 Marks)

48. Determine \(\int_C (ydx + zdz + xdz) \) by using Stoke's theorem, where \(C \) is the curve defined by \((x-a)^2 + (y-a)^2 + z^2 = 2a^2, x+y=2a\) that starts from the point \((2a,0,0)\) goes at first below the \(z\)-plane (15 Marks)

49. Find the values of constants \(a, b \) and \(c \) so that the directional derivative of the function \(f = axy^2 + byz + cz^2x^2 \) at the point \((1,2,-1)\) has maximum magnitude 64 in the direction parallel to \(z\)-axis. (12 Marks)

50. If \(A = 2i + K, B = i + j + k, C = 4i - 3j - 7K \) determine a vector \(\vec{R} \) satisfying the vector equation \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B} \) & \(\vec{R} \cdot \vec{A} = 0 \) (15 Marks)

51. Prove that \(n \vec{r} \) is an irrotational vector for any value of \(n \) but is solenoidal only if \(n+3 = 0 \) (15 Marks)

52. If the unit tangent vector \(\vec{t} \) and binormal \(\vec{b} \) make angles \(\phi \) and \(\phi \) respectively with a constant unit vector \(\vec{a} \) prove that \(\frac{\sin \theta}{\sin \phi} \cdot \frac{d\theta}{d\phi} = -\frac{k}{\tau} \). (15 Marks)

53. Verify Stoke's theorem for the function \(\vec{F} = x^2 \hat{i} - xy \hat{j} \) integrated round the square in the plane \(z = 0 \) and bounded by the lines \(x = 0, y = 0, x = a \) and \(y = a, a > 0 \). (15 Marks)

2006

54. Show that the volume of the tetrahedron \(ABCD \) is \(\frac{1}{6}(|\vec{AB} \times \vec{AC}| \cdot \vec{AD}) \). Hence find the volume of the tetrahedron with vertices \((2,2,2), (2,0,0), (0,2,0)\) and \((0,0,2)\) (12 Marks)

55. Prove that the curl of a vector field is independent of the choice of coordinates (12 Marks)

2005

54. Show that the volume of the tetrahedron \(ABCD \) is \(\frac{1}{6}(|\vec{AB} \times \vec{AC}| \cdot \vec{AD}) \). Hence find the volume of the tetrahedron with vertices \((2,2,2), (2,0,0), (0,2,0)\) and \((0,0,2)\) (12 Marks)

55. Prove that the curl of a vector field is independent of the choice of coordinates (12 Marks)
56. The parametric equation of a circular helix is \(r = a \cos u \hat{i} + a \sin u \hat{j} + cu \hat{k} \) where \(c \) is a constant and \(u \) is a parameter. Find the unit tangent vector \(\hat{t} \) at the point \(u \) and the arc length measured form \(u=0 \). Also find \(\frac{d\hat{t}}{ds} \) where \(S \) is the arc length. (15 Marks)

57. Show that \(\text{curl} \left(k \times \text{grad} \left(\frac{1}{r} \right) \right) + \text{grad} \left(k \cdot \text{grad} \left(\frac{1}{r} \right) \right) = 0 \) where \(r \) is the distance from the origin and \(K \) is the unit vector in the direction \(OZ \). (15 Marks)

58. Find the curvature and the torsion of the space curve. (15 Marks)

59. Evaluate \(\iiint x^2 dy dz + x^2 y dz dx + x^2 z dx dy \) by Gauss divergence theorem, where \(S \) is the surface of the cylinder \(x^2 + y^2 = a^2 \) bounded by \(z = 0 \) and \(x = b \). (15 Marks)

2004

60. Show that if \(\overrightarrow{A} \) and \(\overrightarrow{B} \) are irrotational, then \(\overrightarrow{A} \times \overrightarrow{B} \) is solenodial. (12 Marks)

61. Prove the identity \(\nabla \cdot (A \times B) = (B \cdot \nabla)A + (A \cdot \nabla)B + B \times (\nabla \times A) + A \times (\nabla \times B) \). (15 Marks)

62. Prove the identity \(\iiint (\phi \nabla^2 \psi - \psi \nabla^2 \phi) dV = \iint ((\phi \nabla \psi - \psi \nabla \phi) \cdot \hat{n}) dS \) where \(V \) is the volume bounded by the closed surface \(S \). (15 Marks)

63. Verify Stoke's theorem for \(\hat{f} = (2x - y) \hat{i} - yz^2 \hat{j} - z \hat{k} \) where \(S \) is the upper half surface of the sphere \(x^2 + y^2 + z^2 = 1 \) and \(C \) is its boundary. (15 Marks)

2003

65. Show that if \(a', b' \) and \(c' \) are the reciprocals of the non-coplanar vectors \(a, b \) and \(c \), then any vector \(r \) may be expressed as \(r = (r a') a + (r b') b + (r c') c \). (12 Marks)

66. Prove that the divergence of a vector field is invariant w.r. to co-ordinate transformations. (12 Marks)

67. Let the position vector of a particle moving on a plane curve be \(r(t) \), where \(t \) is the time. Find the components of its acceleration along the radial and transverse directions. (15 Marks)

68. Prove the identity \(\nabla A^2 = 2 (A \cdot \nabla) A + 2 A \times (\nabla \times A) \) where \(\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \). (15 Marks)
69. Find the radii of curvature and torsion at a point of intersection of the surface
\[x^2 - y^2 = c^2, \ y = x \tanh \left(\frac{z}{c} \right). \] (15 Marks)

70. Evaluate \(\iint_S \text{curl} \mathbf{A} \, ds \) Where S is the open surface \(x^2 + y^2 - 4x + 4z = 0, \ z \geq 0 \) and
\[A = \left(y^2 + z^2 - x^2 \right) \mathbf{i} + \left(2z^2 + x^2 - y^2 \right) \mathbf{j} + \left(x^2 + y^2 - 3z^2 \right) \mathbf{k}. \] (15 Marks)

2002

71. Let \(\mathbf{R} \) be the unit vector along the vector \(\mathbf{r}(t) \). Show that \(\mathbf{R} \times \frac{d\mathbf{R}}{dt} = \frac{\mathbf{r}}{r^2} \times \frac{d\mathbf{r}}{dt} \) where \(r = |\mathbf{r}| \) (12 Marks)

72. Find the curvature \(k \) for the space curve \(x = \cos \theta, \ y = \sin \theta, \ z = a \theta \tan \alpha \) (15 Marks)

73. Show that \((\text{curl} \mathbf{v}) = \nabla (\text{div} \mathbf{v}) - \nabla^2 \mathbf{v} \) (15 Marks)

74. Let \(D \) be a closed and bounded region having boundary \(S \). Further, let \(f \) is a scalar function having second partial derivatives defined on it. Show that
\[\iint_S (\nabla f) \cdot \mathbf{n} \, ds = \iiint_D \left[|\nabla f|^2 + f \nabla^2 f \right] \, dv \] Hence \(\iint_S (\nabla f) \cdot \mathbf{n} \, ds \) or otherwise evaluate for \(f = 2x + y + 2z \) over \(s = x^2 + y^2 + z^2 = 4 \) (15 Marks)

75. Find the values of constants \(a, b \) and \(c \) such that the maximum value of directional derivative of \(f = axy^2 + byz + cx^2z^2 \) at \((1, -1, 1) \) is in the direction parallel to y-axis and has magnitude 6. (15 Marks)

2001

76. Find the length of the arc of the twisted curve \(r = (3t, 3t^2, 2t^3) \) from the point \(t=0 \) to the point \(t=1 \). Find also the unit tangent \(t \), unit normal \(n \) and the unit binormal \(b \) at \(t=1 \) (12 Marks)

77. Show that \(\text{curl} \frac{a \times r}{r^3} = -\frac{a}{r^3} + \frac{3r}{r^3} (a \cdot r) \) where \(a \) is a constant vector. (12 Marks)

78. Find the directional derivative of \(f = x^2yz^3 \) along \(x = e^{-t}, y = 1 + 2\sin t, z = t - \cos t \) at \(t=0 \) (15 Marks)

79. Show that the vector field defined by \(F = 2xyz^2 i + x^2z^3 j + 3x^3yz^2 k \) is irrotational. Find also the scalar \(u \) such that \(F = \nabla u \) (15 Marks)

80. Verify Gauss’ divergence theorem of \(A = (4x, -2y^2, z^2) \) taken over the region bounded by \(x^2 + y^2 = 4, \ z = 0 \) and \(z = 3 \) (15 Marks)

2000

81. In what direction from the point \((-1, 1, 1) \) is the directional derivative \(f = x^2yz^3 \) a maximum? Compute its magnitude (12 Marks)
82. (i) Show that the covariant derivatives of the fundamental metric tensors g_{ij}, δ_{ij}, Vanish
(ii) Show that simultaneity is relative in special relativity theory. (6+6=12 Marks)

83. Show that
(i) $(A+B) \cdot (B+C) \cdot (C+A) = 2A \cdot B \cdot C$
(ii) $\nabla \times (A \times B) = (B \cdot \nabla) A - (A \cdot \nabla) B + A (\nabla \cdot B)$ (7+8=15 Marks)

84. Evaluate
$$\int \int F \cdot N ds$$ Where $F=2xyi + yz^2j + xzk$ and S is the surface of the parallelepiped bounded by $x=0, y=0, z=0, x=2, y=1$ and $z=3$ (15 Marks)

85. If g_{ij} and γ_{ij} are two metric tensors and defined at a point and l_{ij} and Λ_{ij} are the corresponding Christoffel symbols of the second kind, then prove that $l_{ij} - \Lambda_{ij}$ is a mixed tensor of the type A_{ij} (15 Marks)

86. Establish the formula $E=mc^2$ the symbols have their usual meaning. (15 Marks)

87. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of A, B, C prove that $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is vector perpendicular to the plane ABC (20 Marks)

88. If $\vec{F} = \nabla \left(x^3 + y^3 + z^3 - 3xyz \right)$ find $\nabla \times \vec{F}$. (20 Marks)

89. Evaluate $\int_C \left(e^{-x} \sin y dx + e^{-y} \cos y dy \right)$ (by Green’s theorem), where C is the rectangle whose vertices are $(0,0), (\pi,0), \left(\pi, \frac{\pi}{2} \right)$ and $\left(0, \frac{\pi}{2} \right)$ (20 Marks)

90. If r_1 and r_2 are the vectors joining the fixed points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ respectively to a variable point $P(x, y, z)$ then the values of grad (r_1, r_2) and curl (r_1, r_2). (20 Marks)

91. Show that $(a \times b) \times c = a \times (b \times c)$ if either $b=0$ (or any other vector is 0) or c is collinear with a or b is orthogonal to a and c (both) (20 Marks)

92. Prove that $\left\{ \frac{i}{ik} \right\} = \frac{\partial}{\partial x_k} \left(\log \sqrt{g} \right)$. (20 Marks)

93. Prove that if \vec{A}, \vec{B} and \vec{C} are there given non-coplanar vectors \vec{F} then any vector can be put in the form $F = \alpha \vec{B} \times \vec{C} + \beta \vec{C} \times \vec{A} + \gamma \vec{A} \times \vec{B}$ for given determine α, β, γ (20 Marks)

94. Verify Gauss theorem for $\vec{F} = 4x \hat{i} - 2y^2 \hat{j} + z^2 \hat{k}$ taken over the region bounded by $x^2+y^2=4, z=0$ and $z=3$ (20 Marks)
95. Prove that the decomposition of a tensor into a symmetric and an anti-symmetric part is unique. Further show that the contracted product $S_{ij} T_{ij}$ of a tensor T_{ij} with a symmetric tensor S_{ij} is independent of the anti-symmetric part of T_{ij}. (20 Marks)

1996

96. State and prove ‘Quotient law’ of tensors (20 Marks)

97. If $\hat{x} i + y \hat{j} + z \hat{k}$ and $r = |\vec{r}|$ show that
 (i) $\vec{r} \times \nabla f(r) = 0$
 (ii) $\nabla \cdot (r^n \vec{r}) = (n+3)r^n$ (20 Marks)

98. Verify Gauss’s divergence theorem for $\vec{F} = x \hat{i} + y \hat{j} + z^2 \hat{k}$ on the tetrahedron $x=y=z=0, x+y+z=1$ (20 Marks)

1995

99. Consider a physical entity that is specified by twenty-seven numbers A_{ijk} in a given coordinate system. In the transition to another coordinate system of this kind, let A_{ijk}, B_{ijk} transform as a vector for any choice of the anti-symmetric tensor. Prove that the quantities $A_{ijk} - A_{ijk}$ are the components of a tensor of third order. Is A_{ijk} the component of tensor? Give reasons for your answer (20 Marks)

100. Let the reason V be bounded by the smooth surfaces S and let n denote outward drawn unit normal vector at a point on S. If ϕ is harmonic in V, show that $\int \frac{\partial \phi}{\partial n} ds = 0$ (20 Marks)

101. In the vector field $u(x)$ let there exists a surface curl v on which $v = 0$. Show that, at an arbitrary point of this surface curl v is tangential to the surface or vanishes. (20 Marks)

1994

102. Show that $n^a j^b$ is an irrotational vector for any value of n, but is solenoidal only if $n = -3$. (20 Marks)

103. If $\vec{F} = y \hat{i} + (x - 2xz) \hat{j} - xy \hat{k}$ evaluate $\iint_s (\Delta \times \vec{F}) \cdot n ds$ Where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy plane. (20 Marks)

104. Prove that $\left\{ i \atop ik \right\} = \frac{\partial}{\partial x} \left(\log \sqrt{g} \right)$. (20 Marks)

1993

105. Prove that the angular velocity or rotation at any point is equal to one half or the curl of the velocity vector V. (20 Marks)

106. Evaluate $\iint_S \Delta \times \vec{F} \cdot n ds$ where S is the upper half surface of the unit sphere $x^2 + y^2 + z^2 = 1$ and $\vec{F} = z \hat{i} + x \hat{j} + y \hat{k}$ (20 Marks)
107. Show that \(\frac{\partial A_p}{\partial x^q} \) is not a tensor even though \(A_p \) is a covariant tensor or rank one.

(20 Marks)

1992

108. If \(\mathbf{F}(x, y, z) = (y^2 + z^2)\mathbf{i} + (z^2 + x^2)\mathbf{j} + (x^2 y^2)\mathbf{k} \) then calculate \(\int_C \mathbf{F} \cdot d\mathbf{x} \) where \(C \) consist of

(i) The line segment from (0,0,0) to (1,1,1)
(ii) the three line segments AB, BC and CD where \(A, B, C \) and \(D \) are respectively the points (0,0,0), (1,0,0), (1,1,0) and (1,1,1)
(iii) the curve \(x = u, u^2 + 2uj + u^2k, u \) from 0 to 1.

(20 Marks)

109. If \(\mathbf{a} \) and \(\mathbf{b} \) are constant vectors, show that

(i) \(\text{div}\{x \times (\mathbf{a} \times \mathbf{x})\} = -2x\mathbf{a} \)

(ii) \(\text{div}\{x \times (\mathbf{a} \times \mathbf{x}) \times (\mathbf{b} \times \mathbf{x})\} = -2\mathbf{a}((\mathbf{b} \times \mathbf{x}) \cdot \mathbf{x}) - 2\mathbf{b}((\mathbf{a} \times \mathbf{x}) \cdot \mathbf{x}) \)

(20 Marks)

110. Obtain the formula \(\text{div}\mathbf{A} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} \left(\frac{g_i}{g} \right)^{1/2} A(i) \) where \(A(i) \) are physical components of \(\mathbf{A} \) and use it to derive expression of \(\text{div}\mathbf{A} \) in cylindrical polar coordinates

(20 Marks)